Monochromatic OptoNano Super-resolution Microscope, 5M Pixel CMOS Camera, Motorized XY Stage, Transparent Blue LED Illumination Table and Coaxial Illumination

PT-ON200V1-MB-MXY-FLIS

Microscope technology has advanced from conventional optical solutions into sophisticated super-resolution microscopes. An ordinary optical microscope’s capability to observe sub-wavelength structures is limited by Abbe’s Equation that Ernst Abbe found in 1873, also called Abbe’s diffraction limit. Microscopic spatial resolution is limited by optical diffraction, which is about half of a light wavelength. In the visible light spectrum, it’s approximately 200nm. Super-resolution optical imaging can now be found in many research lab settings. However, transcending the ~200nm barrier to optical imaging in natural ambient air has always been the limitation. In the early 2000’s a group of researchers began to develop a technology called Optical Microsphere Nanoscopy (OMN). OMN was incorporated into a revolutionary instrument named the OptoNano, the world’s first nano-scale imaging tool in ambient air with a controllable working distance, providing resolution down to 137nm with no sample preparation required. OptoNano microscopes have not only broken the optical limit but also the barriers of high cost and high complexity of operations to super-resolution microscopy. This has opened a new paradigm to enable adoption of this unique super-resolution microscopy technology by users from research labs to bio-chemical scientists to industrial production floor applications.
More Information
Name Monochromatic OptoNano Super-resolution Microscope, 5M Pixel CMOS Camera, Motorized XY Stage, Transparent Blue LED Illumination Table and Coaxial Illumination
Weight 15.0000kgs
Type Blue Light Illumination, Mono. Camera
Observation Environment Ambient Air
Effective Resolution 137nm
Illumination Blue LED 460nm, Transparent Illumination Table and Coaxial Illumination
Camera Type 5MP, 8.44 X 7.06mm Monochromatic CMOS, C-Mount, USB3.0 SS
Included 10X Objective 0.3NA, f20mm, 6.4mm WD, 12mm Pupil, 900nm Res.
Included Microsphere Objective 0.55NA, f4mm, 0-3um WD, 4.4mm Pupil, <200nm Res.
In stock
SKU
PT-ON200V1-MB-MXY-FLIS
£44,814.00

Delivery in : 6-12 weeks

Microscope technology has advanced from conventional optical solutions into sophisticated super-resolution microscopes. An ordinary optical microscope’s capability to observe sub-wavelength structures is limited by Abbe’s Equation that Ernst Abbe found in 1873, also called Abbe’s diffraction limit. Microscopic spatial resolution is limited by optical diffraction, which is about half of a light wavelength. In the visible light spectrum, it’s approximately 200nm. Super-resolution optical imaging can now be found in many research lab settings. However, transcending the ~200nm barrier to optical imaging in natural ambient air has always been the limitation. In the early 2000’s a group of researchers began to develop a technology called Optical Microsphere Nanoscopy (OMN). OMN was incorporated into a revolutionary instrument named the OptoNano, the world’s first nano-scale imaging tool in ambient air with a controllable working distance, providing resolution down to 137nm with no sample preparation required. OptoNano microscopes have not only broken the optical limit but also the barriers of high cost and high complexity of operations to super-resolution microscopy. This has opened a new paradigm to enable adoption of this unique super-resolution microscopy technology by users from research labs to bio-chemical scientists to industrial production floor applications.

We detect that you are accessing the website from a different region. You will be redirected to a local version of OptoSigma.

Your requested the page :

UNITED KINGDOM

Redirection to :