Prismen
Prismen sind optische Komponenten, die verwendet werden, um Licht in einem bestimmten Winkel zu lenken, und können auch verwendet werden, um weißes Licht durch Brechung in seine Farbbestandteile zu zerlegen. Durch die einfachsten Prismen breitet sich Licht ohne Reflexionen (nur Brechung) aus, während komplexere Prismen mehrere interne Reflexionen verwenden, um ihren Zweck zu erreichen. Eigenschaften des Lichts wie Verzögerung können durch cleveres Design des internen Strahlengangs kontrolliert und manipuliert werden. OptoSigma bietet eine große Auswahl an Prismen an, darunter gleichseitige, rechtwinklige, rechtwinklige (beschichtet), Pentaprismen, Eckwürfel, hohle Retroreflektoren, Lichtleiter, Dove-Prismen, Pellin Broca und Knife Edge. Wenn keines unserer vielen Katalogprismen Ihren Anforderungen entspricht, senden Sie uns bitte eine Anfrage für ein kundenspezifisches Prisma.
Prisms Application Guide
By processing the various forms of glass, the prism produces a special effect due to refraction. Since there is no angular offset after manufacture, it is also used as an accurate reference angle.
Function |
Product |
Application |
|
Reflecting light |
Right Angle Prisms(RPB/RPSQ) |
Substitute of the mirror,or reflector of a compact optical system. |
|
Replacing the light |
Corner Cube Prisms(CCB)Hollow Retro-reflectors(RCCB) |
Interferometer, Reflector, such as distance measurement or delay line. |
|
Dispersion wavelength |
Equilateral Dispersing Prisms(DPB/DPSQ/DPTIH11) |
Spectroscopic measurement, Dispersion compensation |
|
Special effects |
Dove Prisms(DOP), Penta Prisms(PPB), Pellin-Broca prism(PBPQ) |
Rotate or flip the image |
About Refraction and Critical angle
When the light is at an incident oblique angle on the glass, causing the refraction at the interface of the glass and air, the traveling direction of the light will change. At this time, the emission angle toward the side of the glass is smaller than the incident angle of the air. If the refractive index of the glass can be seen, this relationship can be determined by Snell’s law. Then, even if the incident light is emitted at the same angle as the angle θb shown below the boundary surface of the glass, through the same path, it will be emitted to the air at the incident angle θa. However, if it is incident at a large angle with the boundary surface from the side of the glass, then emitted to the air-side angle will exceed 90 degrees. It is called “critical” the emission angle of the air side when 90 degrees. It is called to be this angle “critical angle”. When the incident light from the glass boundary is at an angle larger than the critical angle θr, the light will not come out to the air causing total reflection.